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LETTER TO THE EDITOR 

An alternative to JWKB theory 

J Killingbeck 
Physics Department, University of Hull, Hull HU6 7RX, UK 

Received 28 March 1980 

Abstract. A method of numerical integration is presented which leads to a Bohr-Sommer- 
feld type formula yielding exact eigenvalues of the Schrodinger equation. Tests on simple 
potentials give much better results than those of the usual JWKB methods. 

It is well known that the usual first-order JWKB theory yields a Bohr-Sommerfeld type 
of quantisation formula for bound-state energies, and gives poor results for the energies 
of low-lying bound states. We can display the quantisation condition in the canonical 
form 

jBA F(E,  x)  dx = r ( n  +1 + r )  (1) 

for a problem involving one coordinate x, with E the energy, n an integer and r some 
remainder term. We take the Schrodinger equation to be 

-D2r/l+ Vr/l=Er/l. (2) 
The traditional approach is to set the limits in A and B equal to the classical 
turning-point coordinates (for simple potentials such as x~~ with N 3 1) and to set 
r = 0. First-order JWKB theory sets F equal to [ E  - V(X)]”~.  Titchmarsh (1961) has 
shown that with this choice of A, B and F the equation (1) can be made exact with an 
appropriate choice of r. For large n, r turns out to be of order n-’, which explains the 
success of the method for large n. Hioe e ta l ( l976)  have applied Titchmarsh’s result in 
a study of anharmonic oscillator problems. However, to imprave the accuracy of 
equation (1) it is still the overwhelming tradition to keep A, B and r fixed at their 
first-order JWKB values (with r = 0) and to introduce higher-order correction terms 
into the integrand F. Works by Dagens (1969), Dunham (1932), Froman (1978)’ Berry 
and Mount (1972), Kesarwani and Varshni (1980) and many others have explored this 
approach. Newman and Thorson (1972) have developed what is essentially a numerical 
method for iteratively computing the higher-order corrections; their quantisation 
condition involves two ‘connection angles’ which arise from boundary conditions at the 
turning points. 

It has long seemed peculiar to the present author that a calculation restricted to the 
classical region should be expected to give precise results about the energy eigenvalues; 
the characteristic property of the quantum mechanical problem is that the particle can 
spread outside the classical region, while it is not obvious that the JWKB.approach can 
‘see’ into the forbidden region. For example, if V(x) has a ‘wiggle’ at x > A  which 
would allow quantum mechanical tunnelling, how do we allow for this? Recent work by 
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Colwell et al (1978) and Augustin and Rabitz (1979) seems to indicate that ‘tunnelling 
corrections’ to JWKB theory are indeed sometimes needed. Krieger et af (1967) have 
conjectured that even for potentials of x~~ type the result of higher and higher order 
JWKB approximations may only approach the correct eigenvalue in the manner of an 
asymptotic series. There do not seem at the moment to exist any numerical results of 
sufficient accuracy to check this idea. 

A clue to an alternative approach can be found in two short notes by Young 
(1931,1932). In his work on the concept of local momentum Young described a 
method which seems to have been largely neglected in the subsequent development of 
the theory. Dunham (1932) commented that Young’s approach is difficult to apply 
numerically, while the few modern authors who have referred to Young’s work have not 
analysed it in detail. In this short note we wish to point out that, with slight 
modifications, Young’s approach leads to a method which is tractable using modern 
calculators. We treat the bound-state problem; Young (1932) also mentioned some 
results for potential scattering theory. Our view differs from Young’s in that we use real 
wavefunctions rather than complex ones, and we study the differential equation for A, 
equation (6) below, rather than his more complicated equation for P. We consider a 
finite even-parity potential (e.g. x2+Ax4) in equation (2), and look for an even-parity 
solution of the form 

4 = A(x) cos( lox P ( y )  dy). (3) 

Substituting (3) into (2) and treating the sine and cosine equations separately leads 
to the equations 

P A 2 = 1  (4) 
P1/2D2(P-1/2) = P2 + (V -E) ( 5 )  

D2A = A-3 + A (  V -E), (6) 

Young (1931) commented that from ( 5 )  it can be established that P, which he called the 
local momentum, can never become negative. From (3) we see that the condition that 4 
shall tend to zero at &CO is simply equation (1) with r = 0 and A =CO, B = -CO (the 
intuitively ‘sensible’ limits for this quantum mechanical problem), while F = A-2, 
where A satisfies the differential equation (6). This equation, which was not given by 
Young, is the one needed for our numerical method. From equation (2) it follows that 
near x = 0 we have 

t ,b (~)=l -$x~[E-V(O)]+ .  . . (7) 

if we arbitrarily set 4(0) = 1. By making the appropriate expansion in (3) we find that 
(7) is obeyed if we set A(0) = 1 and DA(0) = 0 in (6). (The same result holds for 
odd-parity solutions, which are obtained by using a sine function in (3).) Equation (6) 
can easily be integrated numerically between 0 and CO, the numerical integration of A-’ 
being performed simultaneously. Simply doubling then gives the results for the range 
&CO. One simple way to integrate (6) is to use a finite-difference approach (Killingbeck 
1977) based on the equations 

A(x +h)=R(x)A(x)  

R ( x ) + l / R ( x  -h )=2+hZ[A-4+(V-E) ]  
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with the initial condition R(0) R ( - h )  = 1 (which ensures that DA(0) = 0). The integral 
of A-’ obtained using (8) and (9) and the midpoint rule differs from the exact ( h  = 0) 
value by a term of order h 2  for small h, and use of two h-values (0.01 and 0.02) gives a 
value accurate to about one part in lo6. (Use of large h-values leads to an obvious error 
indication in that A becomes negative.) By using a more sophisticated integration 
method, and by using trial energies with smaller spacings, the results shown in tables 1 
and 2 can be further improved, but the evidence is already quite striking. Our quoted 
energy values in the tables differ from the corresponding exact eigenvalues by about gin 
the last quoted digit, and the first- and third-order versions of traditional JWKB theory 
are clearly nowhere near as accurate for the ground-state problems represented in table 
2. For higher states the present calculation still involves a smooth positive A function; 
the nodes are produced by the cosine factor in equation (3). The infinite integration is 
no problem; A quickly becomes large enough to yield a converged value for the 
integral. 

Table 1. Energy dependence of the phase integral (V  = x 6 ) .  

E 1.144 8 1,144 9 9,073 0 9.073 1 
Z 1.570794 1,570 869 4,712 314 4.712 403 
e t  1.144 803 9.073 084 

~ ~~ ~~ ~~~ 

i Interpolated energies, using v = 3.141 5927. Integrals taken between 0 and CO. 

Table 2. Some ground-state eigenvalue estimates. 

Potential Wl t w3 This work 

x 4  0,867 145 0,951 643 1,060 362 
X 6  0.800 830 1.043 020 1.144 803 
X 8  0,761 936 1.171 232 1.225 820 
x 2  + x 4  1,250 8$ 1.392 353 

t First- and third-order JWKB results, from Krieger et a1 (1967). 
$ From Radmore (1980). 

The present work is intended to point out the value of Young’s ideas to workers in 
the field. There are obviously many questions yet to be explored, e.g. how must the 
method be modified to deal with Coulomb potentials?; how does it relate to the usual 
JWKB method which uses only the classical region?; is it possible to obtain asymptotic 
‘large n’ formulae similar to those for JWKB theory?; can expectation values be 
calculated by direct integration? We hope that this note will stimulate work on such 
problems. 
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